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Abstract

Slow eye movements were detected in the electro-
oculogram of eleven subjects during nighttime driving
simulations. Simultaneously recorded EEG segments
were transformed to the frequency domain with
discrete Fourier transform. A subsequent clustering
without the common summation in spectral bands
sought to analyze how many types of EEG segments
were distinguishable. Self-organizing maps were
applied for clustering. The visualization of the winner
histogram showed no evidence. Therefore the analysis
of the U-matrix together with the watershed
transformation, a method from image processing,
resulted in separable clusters. As in many other
procedures, the number of clusters was determined
with one threshold parameter. Best results were
obtained with 9 clusters; two of them had spectral
densities mainly in the alphal band. Other clusters
were found in the alpha2, theta and delta bands.
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1 Introduction

As the alertness of a subject deteriorates during
extended periods of night work, the probability of
short attention lapses increases [1]. Sleepiness on
night shift is likely to play an important role in
the occurrence of nighttime accidents [2-5]. Torsvall
et al. [6] report in their study that one of five
industrial shift workers fell asleep during work,
mainly in the early morning. There have been several
attempts to study sleepiness on night shift in laboratory

studies [7-9] and also in field studies [6,10-12] using
polysomnographic recordings.

Akerstedt et al. [11] show that with increasing
working time subject rated sleepiness strongly
increases and EEG shows a significant but moderate
increase of hourly mean spectral power density in the
alpha band (7.5 ... 12.5 Hz). Though hourly averaged
power in the theta band (3.5 ... 7.5 Hz) is not affected,
they report that very short burst-like theta activity
could be observed during a short nap. Short alpha
activity before, during and after a short nap could also
be observed. The attention-loss phase, sometimes
called microsleep [24], is characterized by a transition
from the struggle to remain awake to an involuntary
short sleep episode. This phase is also associated with
an increased activity of slow eye movements (SEM)
[13,14]. SEMs are slow (f = 0.2 ... 0.7 Hz) excursions
(u> 100 uV) of the EOG, lasting for more than 1 sec
[9], remaining sometimes during sleep stage 1.

Our investigations were focused on the spectral
characterization of EEG during SEM without using the
common spectral bands in a nonlinear clustering
procedure. We used Kohonen’s self-organized feature
maps combined with an improved method to estimate
the number of spectral EEG clusters.

2 Experiments

Eleven subjects (3 females, 8 males) aged between 19
and 36 years participated in an overnight driving
simulator study. Their task was intentionally
monotonous, simply to avoid major lane deviations.
One driving session of 25 min length was carried out,
every hour from 1 a.m. until 7 a.m. The face of the
driver and the region of the right eye were video-



recorded separately. EEG was recorded in two
unipolar and two bipolar recordings (C3-A2, C4-Al,
01-C3, 02-C4), as were EOG (oblique) and ECG.

3 Analysis

EEG and EOG analog signals were recorded with an
Oxford Medilog system, filtered with a 30 Hz lowpass
filter, and digitized at a rate of 64 samples per second
[15,16]. SEMs were automatically recognized using
the cross correlation function between the EOG signal
and a sine-signal having a duration of 8 sec. If the
value of the correlation function exceeded an empirical
selected threshold of 0.75 for three periodically spaced
values in a row, we assumed that SEM was detected.
The frequency and the amplitude of the sine-signal
were estimated by fitting the sine-signal to 15 SEM
signals from three subjects obtained through visual
scoring. Figure 1 shows the cross correlation function
computed with 0.5 sec time steps as a white line.

Each detected SEM was confirmed by visual
scoring of the recorded digital video. The video
showed that most SEMs occur with closed or half
closed-eyes. Occasionally we observed SEM with eyes
open accompanied by blank staring. The bipolar EEG
recorded at O2-C4 was segmented to a length of 2 sec
for a recognized SEM event.
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Figure 1: EOG of a typical SEM event in the early
morning upper chart: EOG; lower chart: relative
spectral power density of the EOG in the following
bands (from bottom to top, all values in Hz) 0.1-0.4,
0.4-0.6, 0.6-0.8, 0.8-1.2, 1.2-1.5, 1.5-5.0; white line:
cross correlation function; black line: total power
density

Before applying the fast Fourier transform, any
linear trends in the EEG segments were eliminated and
a Welch window was applied to reduce bias effects
due to nonstationarity and sidelobe effects [17]. The
reduction of the total power density due to the

windowing was corrected using the Parceval theorem.
The error of each spectral component of stochastic
signals could reach 100%. Therefore the Welch
method of averaging the periodogram over shifted
windows was used. We were able to reduce the
variance of the Welch periodogram by a factor of n™,
where n is the number of shifted windows. In [17]
the optimal overlap was estimated at 65% for a
Gaussian process.

Figure 1 shows a sine-shaped EOG (upper chart)
indicating SEM occurring in the early morning
(6:14 am.) during a prolonged eye closure of
15 seconds. This event is also characterized by a sharp
increase of EOG relative spectral power density in the
lowest range (0.1 ... 0.4 Hz) (lower chart). Total
spectral power density (black line, lower chart) is not
strongly affected.

Figure 2 shows the associated EEG. Absolute
spectral power density (black line, lower chart) and
relative power in the alpha2-band (fourth stacked band
from the bottom, lower chart) increase during SEM.
The spectral components for EEG below 2 Hz and
above 25 Hz were disregarded for cluster analysis to
restrict the number of variables. These spectral
components have the worst signal-to-noise ratio.

Figure 2: EEG of a typical SEM event in the early
morning upper chart: EEG; lower chart: relative
spectral power density in the delta, theta, alphal,
alpha2, betal, beta2 bands (from bottom to top); black
line: total power density

The input vectors for the following analysis
consisted of 47 spectral components (2 to 25 Hz;
0.5 Hz steps). A principal component analysis (PCA)
was routinely computed. There was no reason to
assume input vectors in a linear subspace, because the
last ten principal components have a residual variance
of about 8%. A Scree test indicated 13 principal
components, but they explained only 30% of the total
variance.



4 Clustering of the EEG-Segments

We used all 47 variables for the self-organizing feature
maps (SOM) [18] to perform a cluster analysis. SOM
is a prototype vector-based neural network. Using the
principle of competitive learning, the prototype vectors
can be adapted to the probability density function of
the input vectors. This paradigm is also known as
vector quantization. The similarity between the input
vector X and the prototype vector W was calculated
using Euclidian distance. During training an arbitrary
prototype vector W; is updated at iteration index t by:

Aw () =n(t) h ;O [X(O) - W;(D)] )

Where m(t) is a learning rate factor decreasing

during training and h(t) is a neighborhood function
between W, the prototype vector winning the
competition, and the prototype vector W; The
neighborhood function hg(t) also decreases during
training. The neighborhood relationships are defined
by a topological structure and are fixed during
training. We used a two-dimensional tetragonal
relationship. In the final phase of training, the fine-
adjustment phase [19], the neighborhood radius is very
small, leading to updates of the winning prototype
vectors W, and of their nearest neighbors.
In the case of a one-dimensional topological structure
it can be shown [19] that the training rule (Eq.1) leads
to an approximation of a monotonous function of the
probability density function of the input vectors. The
two-dimensional topology results in a compromise
between a density approximation and a minimal mean
squared error of vector quantization [19].

Figure 3a: Relative winner frequency for a SOM with
30x40 neurons for Gaussian mixture data

For existing compact regions of input vectors and
existing density centers, as for Gaussian mixtures,
the evaluation of the relative winner frequency of
the prototypes leads to a visualization of clusters.
Figure 3a shows such a gray-level-coded winner
histogram. Five areas with increased winner frequency
are evident.

Figure 3b: Relative winner frequency for a SOM with
30x40 neurons for SEM-EEG data

The Gaussian mixture data were generated by
defining five cluster centers and five covariance
matrices and adding normal distributed noise in a
47-dimensional space, as in our experimental data
set. The estimated total covariance matrix of the
generated data set and of the experimental data set was
nearly the same.

The black colored units in Figure 3a are never-
winning neurons (dead neurons), which make it easy
to distinguish clusters. Figure 3b shows the relative
winner frequency for the experimental data set.
Distinguishing regions with increased winner
frequency is not possible.

But the SOM has a lot of additional information. For
example, the distance between topological neighboring
prototype vectors in the feature space can be
computed. In the case of topology preservation, these
prototype vectors remain neighbors also in the output
space (the two-dimensional map) [20]. If the distance
between two neighboring prototypes is small, then
they probably represent one cluster. Otherwise they
probably represent different clusters. The visualization
of the distances between neighboring prototype
vectors was introduced as the unified distance matrix
(U-matrix) [21]. In a two-dimensional tetragonal
topology, the U-matrix is calculated in nyx columns
and ny rows.



For every prototype vector W,,, where X and y are
the indices of the topological structure, the Euclidian
distances dx and dy between two neighbors and the
distance dxy to the next but one neighbor is calculated:

dX(X1Y): "wx,y _wx+1,Y|| (2)
dy(x,y)= "Wx,y - Wx,y+1|| 3)
Wx,y - Wx+1,y+1 |Wx,y+1 Wx+1,y |

de(X,y)=% | 7 NG @)

[du(t))  dx(L)  du(21) du(n,,1)
dy(11) dxy(L1]) dy(21) dy(n,.1)

U= du(2) dx(12) du22) ... du(n,.2)
dy(12) dxy(12) dy(22) ... dy(h2)| &

du(nx,ny)

_du(ll,ny) dx(ll,ny) du(zz,ny)

The distance du was calculated using the mean
over eight surrounding distances. With four distances
for each neuron dx, dy, dxy and du (Figure 4), the
(2nx -1) x (2ny -1) U-matrix is well defined.
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Figure 4: Definition of the U-matrix and localization
on the tetragonal topological structure, shown for
the neuron in the center only. Circles: positions of
neurons; black squares: positions of U-matrix elements

The U-matrix elements were mapped on a gray
scale. Light gray levels indicate low values, and dark
gray-levels indicate high values.

Figure 5a: U-matrix for SOM from Figure 3a

Scoring the U-matrix of Gaussian mixture data
(Figure 5a) leads visually to five clusters. As expected,
the cluster regions on the map are regions of small
distances between the prototype vectors, which are
separated by small regions of large distances. The U-
matrix of the SEM-EEG data (Figure 5b) has much
more complexity, and it is difficult to determine
borders.
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Figure 5b: U-matrix for SOM from Figure 3b

Costa et al. [22] propose an automatic segmentation
of the U-matrix using the watershed algorithm of gray
scale image processing [23]. Regarding high values as
mountains and low values as valleys, the algorithm can
be illustrated by flooding the valleys with water;
watersheds will be built up where the water converges
(Figure 6). This algorithm leads to closed borders. It’s
not difficult to evaluate the number of clusters. All
prototype vectors in one segmented region represent



one cluster, and the fusion of their Voronoi sets leads
to all items of a cluster.

It’s difficult to choose suitable initial values for each
reservoir; otherwise a generation of many segments is
unavoidable [22]. The number of segments can be
reduced during initialization by the threshold
parameter h,;,. All values which are lower than hy,
are assigned to the same value as h,,.
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Figure 7: U-matrix from Figure 5b after watershed
Transformation

5 Number of Clusters

The results of segmentation are dependent on the
size of the SOM. With a relatively large number of
prototype vectors many clusters are obtained.
Smoothing the gray level function with a two-
dimensional filter reduces the risk of multiple
segmentations.

In several regions of the U-matrix (Figure 5a, 5b)
black-and-white textures are observable. They describe
relatively large differences between dx and dy and are

connected with local stretchings of the SOM along one
topological coordinate.

If the dx elements of the U-matrix, for example, are
visualized only, some segment borders disappear. Up
to now the following defaults were used:

e use of function du(x,y)
e 3x3-Gaussian filtering

e watershed transformation
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Figure 8a: Number of clusters vs. hy,;, for the U-matrix
of Figure 5b with generation of new regions [22].
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Figure 8b: Number of clusters vs. hy,;, for the U-matrix
of Figure 5b without generation of new regions.

The segmentation was repeated many times with
increasing threshold parameter h,;, [22] (Figure 8a).
No plateau in the number of clusters was detectable.
Therefore we propose a modification allowing the
generation of new minima regions during flooding. For
the most extended plateau we obtained 9 clusters
(Figure 8b).
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Figure 9: All 1652 input vectors grouped in 9 different
clusters; horizontal: frequency; vertical: item; gray
scale: spectral power density.

6 Results

The 9-cluster solution of the described clustering and
segmentation procedure is shown in Figure 7. The
segments contain different number of prototype
vectors. The fusion of their Voronoi sets, mentioned
above, leads to the clusters (Figure 9). Cluster 1 and 2
contain input vectors with large magnitudes in the
alphal band (7.5-10.5 Hz), cluster 6 in the alpha2 band
(10.5-12.5 Hz), cluster 3 in the theta band (3.5-7.5 Hz)
and cluster 9 in the delta band (1.0-3.5 Hz). In contrast
to the usual summation in frequency bands, more
details are available. The input vectors of cluster 1 and
2, for example, are large in the same spectral band, but
they differ in the magnitude range and differ in other
spectral bands.

From Figure 9 one may get the visual impression of
homogeneous clusters, with the exception of cluster 7
and 8.

An advantage of the described method is the
relatively low number of free parameters and the
ability to reproduce the results. A comprehensive
validation of the results remains to be carried out.
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